
 

 

 

Abstract 
 

The paper provides a method of image segmentation of 

binary and gray scale images. For binary images, the 

method captures not only connected components but also 

the holes. For gray scale images, there are two kinds of 

ñconnected componentsò ï dark regions surrounded by 

lighter areas or light regions surrounded by darker areas. 

 

1. Introduction  

We address the issue of image segmentation of binary 

and gray scale images. The scientific foundation of the 

proposed method is topology, the science of continuity 

and connectedness [7].  

The topological analysis is intended to reveal the most 

basic things about the image: how many connected 

components are present, which ones have holes and how 

many. It is also a part of the analysis to capture these 

topological features. The next stage is geometric: 

measuring them and finding their locations. With this data, 

it may be possible to understand the content of the image. 

We will use the tools that are standard in the discipline. 

The first tool is cell decomposition: the image is 

represented as a combination of pixels as well as edges 

and vertices. The second tool is cycles: both the connected 

components and the holes are captured by circular 

sequences of edges. 

The challenge is that these topological tools have not 

been commonly applied in the analysis of gray scale 

images. For example, while in binary images the meaning 

of connected components is clear, for gray scale images, a 

ñconnected componentò should be a dark region 

surrounded by a lighter area. In other words, it is a 

sublevel set of the gray level function. To deal with the 

multitude of sublevel sets we record them in a graph.  This 

graph captures the inclusion hierarchy among the sublevel 

sets. A similar data structure is created for the holes. 

Combined these two graphs represent the topology of the 

image. 

The algorithm has been tested and shown successful in 

segmenting a variety of images. 

2. Related work 

 Image segmentation is the extraction of objects from an 

image [3].  

A common technique finds the boundaries of the 

objects, called edge search. In the case of a gray scale 

image, the edges are found by locating the areas where the 

rate of change from black to white is high. Examples are 

contour trees [8], active contours [3], the digital Morse 

theory [11], and many others. This technique, however, 

fails when the boundaries of objects are not well defined. 

 Another approach to capturing objects in gray scale 

images is to produce a tree representation of the image [6], 

[17], [20]. In [6], the tree is built by cutting 

(simultaneously) minima and maxima of the gray scale 

function - slice by slice. The result is a hierarchy of 

objects that is recorded as a tree called ñscale treeò. Their 

example is below. 

 

 

 Homology theory provides the algebraic description of 

the topology. There have been a few attempts to address 

homology computation in imaging in the academic 

literature and the treatment tends to be cursory [16], [18]. 

More recent publications [24], [15] provide a number of 

useful algorithms for homology but their applicability in 

image analysis is not addressed. In [12] homology is used 

for image matching. In the context of digital topology this 

subject is addressed in [14], [19].  

There are several software packages designed to 

compute homology. CHomP, the Computational 

Figure 1. An image and its scale tree. 
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Homology Project, [10] is written in C++ and works with 

a command prompt. PLEX [21] is a set of routines for 

MATLAB that computes the Betti numbers. Alpha Shapes 

[1], [5] computes Betti numbers of simplicial complexes 

representing point clouds. CGAL, the Computational 

Geometry Algorithms Library, [9] and Simplicial 

Homology for GAP [23] are collections of C++ code for 

computation of simplicial homology. From this list, only 

CHomP can compute the homology of cubical complexes 

and, therefore, is applicable to digital images. None of 

these methods and programs is applicable to gray scale 

images.  

The present research was inspired primarily by the 

notion of ñpersistent homologyò [13] and grew from the 

desire to apply this concept to digital image analysis. 

3. The topology of a binary image 

 

 
Consider the first image in Figure 2. We would like the 

computer to see what we see ï black "objects" on white 

background. And we want these objects captured ï pixel-

wise ï so that we can deal with them as separate entities. 

Then we will have these objects measured and their 

locations found. 

This problem is commonly known as "connected 

component labeling" and has many different solutions. 

The approach we suggest below and the algorithm we 

develop are different from those. The output is of course 

the same. 

Some of these components have topological features of 

their own, the "holes". The holes will also be counted, 

captured, measured etc.  

We think of black objects as connected components and 

white objects as holes in dark objects. However, in the 

second image in Figure 2 we see white objects on black 

background. The approach is also feasible.  

To stay consistent, we have to choose one of these two 

options and we choose the former. Binary images are 

analyzed as if they have black objects on white 

background. As a result, the white objects that touch the 

border are not counted.  

4. Cell decomposition of binary images 

A binary image is a combination of black and white 

pixels. Each pixel is given by its location in the image, so 

it is just a pair of numbers. It is then natural to represent an 

object simply as a list of pairs of numbers. We will take a 

different approach.  

We will think of a pixel as a square, or a tile. Next, the 

boundary of a pixel is a combination of its four edges. 

Since an edge is shared by two adjacent pixels, keeping 

the list of these edges is a way to record how pixels are 

attached to each other. Meanwhile, keeping the list of 

vertices is a way to record how edges are attached to each 

other. This is called cell decomposition. It is a standard in 

algebraic topology. 
 

 
The first advantage of this approach is its generality. 

The pixels are attached to each other along the edges they 

share. This it is easily applicable to all dimensions:  

¶ a vertex is a 0-cell, 

¶ two adjacent edges are 1-cells and they share a 

vertex, a 0-cell, 

¶ two adjacent pixels are 2-cells and they share an 

edge, a 1-cell, 

¶ two adjacent voxels are 3-cells and they share a 

face, a 2-cell, 

¶ etc.  

The second advantage is that it allows us to treat objects 

and holes in a uniform fashion. The result is an algorithm 

that simultaneously captures both. 

Another advantage is related to the fact that we want 

our algorithm to be incremental ï adding one pixel at a 

time. Cell decomposition gives us an incremental 

algorithm that is both simple and flexible. As a result it 

can be extended to gray scale images, and later to color 

images, video, etc. 

With cell decomposition, when we need to add a pixel 

to the image, we add its vertices first, then the edges, and 

finally the pixel itself. This makes the algorithm simpler 

than one that adds a whole pixel at once.  Consider the fact 

that the new pixel is adjacent to 8 other pixels (the 8-

connectedness) and these 8 pixels may belong to up to 4 

different components. The result is that the number of 

cases to consider is quite high. Meanwhile, if  an edge is 

added instead, the vertices are already present. The result 

is that there are only 4 cases to consider: the new edge 

may connect two components to each other from the 

inside or outside, complete a hole in a component or 

another a hole (Figures 8-11). 

Figure 3. Left: Cell decomposition of the pixel. The edges and vertices 

may be shared with adjacent pixels. Right: Cell decomposition of 8 
pixels arranged in a square. 

 
. 

Figure 2. A binary image and its negative. 



 

 

The cell decomposition also makes certain concepts 

more straightforward. First, an object and its background 

donôt share pixels, only edges. As a result, the area of a 

component plus the area of the complement is exactly the 

total area of the image. Second, the perimeter isnôt the 

number of pixels in its boundary but the number of edges.  

5. Using cycles to partition binary  images  

Both components and holes are captured by cycles. By 

cycles, we will understand circular sequences of edges. 

There are 0- and 1-cycles:  

¶ A 0-cycle follows the outer boundary of a 

connected components (object), 

¶ A 1-cycle follows the outer boundary of a hole.  

 
 

 

 

This results in a natural and unambiguous 

representation of the regions by the curves that enclose 

them. A 0-cycle is traversed clockwise (on the outside of 

the object like a rubber band) and a 1-cycle is traversed 

counterclockwise. Observe that in the either case black is 

on the right.  

Note: The name ñ1-cycleò is justified by the fact that 

this is a sequence of 1-cells. But so is a 0-cycle. This 

representation however is only a matter of convenience. It 

can just as easily be represented as a sequence of vertices 

or 0-cells. 

Of course, 1-cycles of the picture are 0-cycles of its 

negative and vice versa, except for ones that touch the 

border of the image.  

Given an image, any cycle can be traversed by taking 

left turns from the initial edge in such a way that black 

pixels are always on the right - until this edge is reached 

again.  

The result of this topological analysis is a partition of 

the binary image. The partition is a collection of non-

overlapping regions, connected sets of black pixels and 

connected sets of white pixels, that covers the whole 

image. The partition is achieved by finding boundaries of 

these regions as 0- and 1-cycles. These cycles are closed 

curves made of vertical and horizontal edges of pixels.  

6. The graph representation of the topology of 

a binary image 

The algorithm is incremental. The cycles are constructed 

as pixels, one by one, are added to the image. Since every 

pixel also contains edges and vertices, the process of 

adding a pixel (cell) starts with adding its vertices and then 

its edges, unless those are already present as parts of other 

pixels. These vertices, edges, and pixels are marked as 

"current" (see the next section).  

As the new pixels are being added, components merge, 

holes split, etc. The topology of the image changes. This 

process is captured by cycles as they appear and disappear, 

merge and split. The information about these changes is 

recorded in a graph. Each node in the graph represents a 

cycle. The directed arcs (arrows) that connect the nodes 

represent the merging and the splitting of the cycles.  

 
Adding a new vertex creates a new component and a 

new node in the graph. Adding a new edge either connects 

two components or creates a hole in an existing 

component. Adding the square itself eliminates a 1-cycle.  

Letôs consider an extremely simple example - adding a 

single pixel to a blank image. It takes 9 steps 

corresponding to the 9 items to be added.  

 

 
 

 

 

The construction of the image is represented by a graph. 

Its nodes correspond to the cycles and the arcs correspond 

to merging and splitting of the cycles. Each arrow is 

Figure 5. Adding a stand-alone pixel requires 9 steps: adding 4 vertices, 4 

edges, and the cell itself. 
. 
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Figure 6. The stages of adding a single pixel to a blank image. 0-

cycles are in red and the only 1-cycle is in green. 

Figure 4. The objects and the holes are represented as cycles. Here 

A and B are 0-cycles (red), C and Cô are 1-cycles (green). 

 



 

 

accompanied by a number indicating which item is being 

added.  

 
 

 

At the first stage we have 4 nodes, corresponding to the 

0-cycles. Then they merge into one. This 0-cycle splits 

into two cycles, a 0-cycle and a 1-cycle. Finally, this 1-

cycle disappears. The end result is of course just the last 

existing cycle, H. The graph building procedure and the 

graph itself will however be important in the analysis of 

gray scale images. 

Generally, this is an acyclic directed graph. The 

maximum degree is 2. 

Suppose N is the number of pixels in the image. Then, 

the total number of pixels, edges, and vertices is O(N) so 

is the size of the graph.  

7. The pseudocode of the analysis algorithm 

for binary images 

 A crucial part of the algorithm is the correspondence 

table T: edge Ÿ cycle. Maintaining this table is necessary 

at every step. 

 The algorithm of image analysis is the process of 

adding pixels one by one while keeping track of changes 

in the topology. 
// -------------------------------------------  

ImageAnalysis with binary image I   

 

FOR all pixels in I  

   IF P is black THEN  

     CALL Add Pixel  with P  

   ENDIF 

ENDFOR 

// -------------------------------------------  

Next is the operation of adding a pixel. It includes 

adding its vertices, its edges, and then the pixel itself. 

Adding an edge means assigning cycles to both of the 

directed edges ï forward E and back -E. In particular, 

there is always a 1-cycle inside the pixel. It is ñremovedò 

as the square closes the hole. 
// -------------------------------------------  

AddPixel  with pixel P   

 

CALL AddVertex with upper right vertex of P  

CALL AddVertex with upper left vertex of P  

CALL AddVertex with lower right vertex of P  

CALL AddVertex with lower left vertex of P  

 

CALL AddEdge with lower edge of P  

CALL AddEdge with right edge of P  

CALL AddEdge with upper edge of P  
CALL AddEdge with left edge of P  

 

E = lower edge of P  directed  counterclockwise  

CALL RemoveCycle with 1 - cycle A = T(E)  

// -------------------------------------------  

Adding a vertex is trivial. It creates one new 0-cycle 

represented by a node that isnôt connected to anything yet. 

But first you verify that the vertex isnôt already present. 
// -------------------------------------------  

AddVertex with vertex V   

 

IF V is present  THEN 

 RETURN 

ENDIF 

Mark V as present  

Call Create Cycle with V  RETURNING 0- cycle  A 

// -------------------------------------------  

Adding an edge is the most complex step. There are 

three cases illustrated in Figures 8-10. Which case is 

determined based on the correspondence table T.  
// -------------------------------------------  

AddEdge with edge E   

 

IF T( E) != NULL  or T( - E) != NULL  THEN 

 RETURN 

ENDIF 

 

CALL NextEdge  with E RETURNING edge E1  

A = T(E1)  

CALL NextEdge  with  ïE RETURNING edge E2  

B = T(E2)  

 

IF A == B THEN  

 CALL SplitCycle with E1, E2, and A  

ELSE 

 CALL MergeCycles with E1 and A, B  

ENDIF 

// -------------------------------------------  

 
Figure 8. Case (a): the new edge connects two different 0-cycles. 

 
Figure 9. Case (b): the new edge connects a 0-cycle to itself. 

Figure 7. A graph representation of the 9 steps required to add a stand-

alone pixel. 

 



 

 

 
Figure 10. Case (c): the new edge connects a 1-cycle to itself. 
 

 
Figure 11. Case (d): the new edge connects a 1-cycle and a 0-cycle. 

 

A 0-cycle can merge with either 0- or 1-cycle.  
// -------------------------------------------  

MergeCycles with cycles A, B and edge E   

 

CALL CreateCycle with E RETURNING 0 - cycle C  

CALL MarkEdges with E and C  

Add arcs  from A ,  B to C to  the graph  

0- Betti number --   
// -------------------------------------------  

Either a 0- or a 1-cycle can split.  
// -------------------------------------------  

SplitCycle with edge s E1, E2  and cycle A   

 

IF A is a 1 - cycle THEN  

 CALL CreateCycle with E1 RETURNING 0 - cycle C  

 CALL CreateCycle with E2 RETURNING 0 - cycle D  

ENDIF 

 

IF A is a 0 - cycle THEN  

 CALL CreateCycle with E1 RETURNING 0 - cycle C  

 CALL CreateCycle with E2 RETURNING 1 - cycle D  

ENDIF 

 

CALL MarkEdges with E1 and C  

CALL MarkEdges with E2 and D  

Add arcs  from A to C ,  D to  the graph  

1- Betti number ++  

// -------------------------------------------  

 Creating a cycle means adding a new node to the graph. 
// -------------------------------------------  

Create Cycle with edge E  

 

Create node A in the graph  

T(E) = A  

RETURN A 

// -------------------------------------------  

 Removing a cycle means assigning NULL to all of its 

edges. 
// -------------------------------------------  

RemoveCycle with cycle A   

 

FOR all edges  E in I  

   IF T(E) == A  THEN  

     T(E) = NULL  

   ENDIF 

ENDFOR 

// -------------------------------------------  

 Given an edge of a cycle, one can find the next edge of 

the cycle. 
// -------------------------------------------  

NextEdge  with edge E   

 

Start points of edges E1, E2, E3, E4 = end point 

of E  

Direction of E1 = direction of E + 90 degrees  

Direction of E2 = direction of E  

Direction of E3 = direction of E -  90 degrees  

Direction of E 4 = -  direction of E 

 

FOR edge  G =  E1, E2, E3, E4  

   IF T( G) ! = NULL   

      RETURN G 

   ENDIF 

ENDFOR 

// -------------------------------------------  

 Next function goes around a given cycle and assigns it 

to the edges. 

// -------------------------------------------  

MarkEdges with edge E and cycle A   

 

CALL NextEdge  with edge E RETURNING edge G 

WHILE G != E  

   T(G) = A  

   CALL NextEdge  with edge G RETURNING edge G 

ENDWHILE 

// -------------------------------------------  

8. The topology of a gray scale image  

 A gray scale image is simply a table filled with numbers 

indicating the gray level. One can also think of it as a 

function of two variables (the gray level function) defined 

on a rectangular grid. 

 
 In binary images objects are either black areas 

surrounded by white background or white areas 

surrounded by black background. Similarly, our initial 

assumption about gray scale images will be that objects 

are either darker areas surrounded by lighter background 

or lighter areas surrounded by darker background. In other 

words, the dark objects are the connected sub-level sets 

and the light objects are the connected supra-level sets of 

the gray level function. The boundaries of the objects are 

the level curves. Since all of these sets are connected 

Figure 12.A gray scale image and its gray level function. 



 

 

collections of pixels they will  be represented as 0- and 1-

cycles.  

 At this stage the image analysis does not have 

unambiguous results. 

 
 

 

It may seem clear that in the above image there are two 

objects and the fist one has two holes. However, where the 

boundaries of these objects are located depends on the 

chosen threshold or thresholds. The choice of these 

thresholds will affect the topology of the image, as 

illustrated below.  

 

 
 

 

The chosen thresholds will affect the measurements of 

the objects will also be different. As a result some of the 

objects may or may not be discarded as noise. 

The maximal number of dark (light) objects is equal to 

the number of local minima (maxima) of the gray scale 

function.  

Our approach to dealing with this ambiguity is to collect 

all possible cycles and then filter them based on size,  

contrast, etc. 

The acquisition of all possible cycles is carried out via 

image thresholding. Given a number T, thresholding is the 

process of replacing all the pixels with gray level lower 

than or equal to T with black leaving the rest white. This 

creates a binary image that we call the frame 

corresponding to T. As gray runs from 0 to 255, we have a 

sequence of 256 frames. Observe that as you move from 

frame to the next, more black pixels appear. 

9. The graph representation of the topology of 

a gray scale image 

 The collection of all possible cycles is organized in a 

graph, the topology graph of the gray scale image. The 

collections of cycles of frames from 0 to 255 form a 

sequence. They are arranged in layers within the graph. 

 

 

The arcs in the graph indicate inclusion. Suppose we 

change the threshold from 0 to 255. Then, any of the 

minima of the gray scale function will produce a sequence 

of growing dark objects, up to some threshold. At the 

same time, any of the maxima will produces a sequence of 

shrinking light objects, starting at some threshold. There 

are also three other kinds of ñtopological eventsò (see 

Figures 8-11):  

1. dark objects merge, 

2. a dark object form a hole (light object) inside, 

3. light objects split. 

 One can form the topology graph from the two 

ñinclusion treesò ï the one for the dark objects and the 

other for the light. The latter is turned upside down and 

attached to the former wherever a topological event of the 

second type happens. The topology graph may be a tree 

(Figure 15), but generally it isn't. Consider, for example, 

the negative of the image in Figure 15, below.  

 

 

 
Figure 16. An image and its topology graph, which isnôt a tree. 

Figure 15. The topology graph for the image in Figure 1. Here the 

objects are: mouth E (black), head B (gray), eyes C and D, entire 
image A (white). 
 

 
 

Figure 13. The blurred version of the image in Figure 2. 

 

Figure 14. Each choice of thresholds produces a different topology. 



 

 

 As the threshold grows, new pixels are being added and 

the cycles in the image appear and disappear. Components 

merge, holes split, etc. and the topology keeps changing. 

The information about these changes is recorded in the 

topology graph. Each node in the graph represents a cycle, 

and the arcs represent merging and splitting of the cycles.  

As a matter of convenience instead of the topology 

graph we build the augmented topology graph, or simply 

the augmented graph, of the image. The growing threshold 

creates a partial order on the set of pixels. In that order the 

pixels are added to the image. The procedure of building 

this graph with nodes representing cycles is exactly the 

same as the one presented in Section 6. During this 

process the 256 frames will appear but between them there 

will be auxiliary stages. The frames will generate the 

principal cycles and the rest are the auxiliary cycles. The 

graph breaks into layers: auxiliary nodes, principal nodes 

of the 0
th
 frame, auxiliary nodes, principal nodes of the 1st 

frame, etc. The topology graph can be extracted from the 

augmented graph by removing all auxiliary nodes and 

adding arcs between principal nodes accordingly. Unlike 

the topology graph, the augmented graph is dependent on 

the order of pixels (within frames). 

Suppose the image consists of two pixels, black and 

gray, on white background. Then the construction of the 

augmented graph starts with adding the black pixel. The 

graph at this stage is given in Figure 55. It ends with a 

single principal cycle, H. The rest are auxiliary.  

Next, if the gray pixel isnôt adjacent to the black, the 

second stage looks exactly the same as the first. It contains 

a single frame cycle, Hô. In this case the augmented graph 

consists of these two disconnected parts and the topology 

graph is simply: H, Hô.  

 
 

 

 

If the gray pixel is adjacent to the black, the augmented 

graph is connected. There are 6 steps. Initially only H, the 

0-cycle created during the first stage, is present. Then, two 

new vertices are added creating two new 0-cycles, Bô and 

Cô. Then two edges are added and these three cycles 

merge. When the third edge is added, a 1-cycle appears. 

Adding the square removes this cycle. Only one 0-cycle is 

left, Hô (a two pixel dark object). The topology graph is 

simply H Ÿ Hô. 

Now, Hô contains H. Therefore only one of them should 

be counted. Which one? This is for the user to decide. He 

may be interested in larger objects (Hô) or objects with 

higher contrast from the surroundings (H). 

 Letôs consider another simple example. The visual 

inspection of the image in Figure 17 reveals that it 

contains two dark objects. This information can also be 

acquired from the analysis of the frames of the image, as 

follows. The number of objects in each frame is: 1, 2, and 

1. However, to avoid double-counting, we will only count 

an object if it does not have an ancestor in the previous 

frame. Then the total count of objects in the image is:  1 + 

1 + 0 = 2. This is the maximum possible number. The user 

may decide that one or both of these objects are noise. In 

the latter case there is only one object ï the whole square. 

 
Some of the principal cycles will have to be discarded 

by the user. The remaining ones will represent the 

simplified topology of the image. We will call them active 

cycles. 

10. The pseudocode of the analysis algorithm 

for gray scale images 

 The algorithm of image analysis is the process of 

adding pixels one by one while keeping track of changes 

in the topology. 

The analysis of the topology of a gray scale image 

consists of two stages: 

1. The creation of the augmented graph, and 

2. The filtering of the principal cycles and 

creation of the list of active cycles. 

The operation of adding a pixel and all functions it calls 

are exactly the same as in the case of a binary image. The 

only difference is a list of all principal cycles is 

maintained. 
// -------------------------------------------  

ImageAnalysis with gray scale  image I   

 

FOR all thresholds T = 0, é, 255 

   FOR all pixels P in I  

  IF the value of  P <= T THEN  

    CALL Add Pixel  with P  

  ENDIF 

   ENDFOR 

 Add all cycles with no descendan ts to the list 

of principal cycles  

ENDFOR 

 

FOR all principal  cycles C  

   IF C is a 0 - cycle,  

 Evaluate(C) == 1 and  

C does not have an ancestor D with 

Evaluate(D)  == 1 THEN 

      Add C to the list of active cycles  

   ENDIF 

   IF C is a 1 - cycle,  

Figure 18: A gray scale image and its frames. 

Figure 17. The augmented topology graph: adding the second 

(adjacent to the first) pixel to the image. This graph is attached to the 
graph in Figure 7. 




