

Abstract

The paper provides a method of image segmentation of

binary and gray scale images. For binary images, the

method captures not only connected components but also

the holes. For gray scale images, there are two kinds of

ñconnected componentsò ï dark regions surrounded by

lighter areas or light regions surrounded by darker areas.

1. Introduction

We address the issue of image segmentation of binary

and gray scale images. The scientific foundation of the

proposed method is topology, the science of continuity

and connectedness [7].

The topological analysis is intended to reveal the most

basic things about the image: how many connected

components are present, which ones have holes and how

many. It is also a part of the analysis to capture these

topological features. The next stage is geometric:

measuring them and finding their locations. With this data,

it may be possible to understand the content of the image.

We will use the tools that are standard in the discipline.

The first tool is cell decomposition: the image is

represented as a combination of pixels as well as edges

and vertices. The second tool is cycles: both the connected

components and the holes are captured by circular

sequences of edges.

The challenge is that these topological tools have not

been commonly applied in the analysis of gray scale

images. For example, while in binary images the meaning

of connected components is clear, for gray scale images, a

ñconnected componentò should be a dark region

surrounded by a lighter area. In other words, it is a

sublevel set of the gray level function. To deal with the

multitude of sublevel sets we record them in a graph. This

graph captures the inclusion hierarchy among the sublevel

sets. A similar data structure is created for the holes.

Combined these two graphs represent the topology of the

image.

The algorithm has been tested and shown successful in

segmenting a variety of images.

2. Related work

 Image segmentation is the extraction of objects from an

image [3].

A common technique finds the boundaries of the

objects, called edge search. In the case of a gray scale

image, the edges are found by locating the areas where the

rate of change from black to white is high. Examples are

contour trees [8], active contours [3], the digital Morse

theory [11], and many others. This technique, however,

fails when the boundaries of objects are not well defined.

 Another approach to capturing objects in gray scale

images is to produce a tree representation of the image [6],

[17], [20]. In [6], the tree is built by cutting

(simultaneously) minima and maxima of the gray scale

function - slice by slice. The result is a hierarchy of

objects that is recorded as a tree called ñscale treeò. Their

example is below.

 Homology theory provides the algebraic description of

the topology. There have been a few attempts to address

homology computation in imaging in the academic

literature and the treatment tends to be cursory [16], [18].

More recent publications [24], [15] provide a number of

useful algorithms for homology but their applicability in

image analysis is not addressed. In [12] homology is used

for image matching. In the context of digital topology this

subject is addressed in [14], [19].

There are several software packages designed to

compute homology. CHomP, the Computational

Figure 1. An image and its scale tree.

Topology Based Method of Segmentation of Gray Scale Images

Peter Saveliev

Marshall University

One John Marshall Drive, Huntington, WV 25755, USA
saveliev@marshall.edu

Homology Project, [10] is written in C++ and works with

a command prompt. PLEX [21] is a set of routines for

MATLAB that computes the Betti numbers. Alpha Shapes

[1], [5] computes Betti numbers of simplicial complexes

representing point clouds. CGAL, the Computational

Geometry Algorithms Library, [9] and Simplicial

Homology for GAP [23] are collections of C++ code for

computation of simplicial homology. From this list, only

CHomP can compute the homology of cubical complexes

and, therefore, is applicable to digital images. None of

these methods and programs is applicable to gray scale

images.

The present research was inspired primarily by the

notion of ñpersistent homologyò [13] and grew from the

desire to apply this concept to digital image analysis.

3. The topology of a binary image

Consider the first image in Figure 2. We would like the

computer to see what we see ï black "objects" on white

background. And we want these objects captured ï pixel-

wise ï so that we can deal with them as separate entities.

Then we will have these objects measured and their

locations found.

This problem is commonly known as "connected

component labeling" and has many different solutions.

The approach we suggest below and the algorithm we

develop are different from those. The output is of course

the same.

Some of these components have topological features of

their own, the "holes". The holes will also be counted,

captured, measured etc.

We think of black objects as connected components and

white objects as holes in dark objects. However, in the

second image in Figure 2 we see white objects on black

background. The approach is also feasible.

To stay consistent, we have to choose one of these two

options and we choose the former. Binary images are

analyzed as if they have black objects on white

background. As a result, the white objects that touch the

border are not counted.

4. Cell decomposition of binary images

A binary image is a combination of black and white

pixels. Each pixel is given by its location in the image, so

it is just a pair of numbers. It is then natural to represent an

object simply as a list of pairs of numbers. We will take a

different approach.

We will think of a pixel as a square, or a tile. Next, the

boundary of a pixel is a combination of its four edges.

Since an edge is shared by two adjacent pixels, keeping

the list of these edges is a way to record how pixels are

attached to each other. Meanwhile, keeping the list of

vertices is a way to record how edges are attached to each

other. This is called cell decomposition. It is a standard in

algebraic topology.

The first advantage of this approach is its generality.

The pixels are attached to each other along the edges they

share. This it is easily applicable to all dimensions:

¶ a vertex is a 0-cell,

¶ two adjacent edges are 1-cells and they share a

vertex, a 0-cell,

¶ two adjacent pixels are 2-cells and they share an

edge, a 1-cell,

¶ two adjacent voxels are 3-cells and they share a

face, a 2-cell,

¶ etc.

The second advantage is that it allows us to treat objects

and holes in a uniform fashion. The result is an algorithm

that simultaneously captures both.

Another advantage is related to the fact that we want

our algorithm to be incremental ï adding one pixel at a

time. Cell decomposition gives us an incremental

algorithm that is both simple and flexible. As a result it

can be extended to gray scale images, and later to color

images, video, etc.

With cell decomposition, when we need to add a pixel

to the image, we add its vertices first, then the edges, and

finally the pixel itself. This makes the algorithm simpler

than one that adds a whole pixel at once. Consider the fact

that the new pixel is adjacent to 8 other pixels (the 8-

connectedness) and these 8 pixels may belong to up to 4

different components. The result is that the number of

cases to consider is quite high. Meanwhile, if an edge is

added instead, the vertices are already present. The result

is that there are only 4 cases to consider: the new edge

may connect two components to each other from the

inside or outside, complete a hole in a component or

another a hole (Figures 8-11).

Figure 3. Left: Cell decomposition of the pixel. The edges and vertices

may be shared with adjacent pixels. Right: Cell decomposition of 8
pixels arranged in a square.

.

Figure 2. A binary image and its negative.

The cell decomposition also makes certain concepts

more straightforward. First, an object and its background

donôt share pixels, only edges. As a result, the area of a

component plus the area of the complement is exactly the

total area of the image. Second, the perimeter isnôt the

number of pixels in its boundary but the number of edges.

5. Using cycles to partition binary images

Both components and holes are captured by cycles. By

cycles, we will understand circular sequences of edges.

There are 0- and 1-cycles:

¶ A 0-cycle follows the outer boundary of a

connected components (object),

¶ A 1-cycle follows the outer boundary of a hole.

This results in a natural and unambiguous

representation of the regions by the curves that enclose

them. A 0-cycle is traversed clockwise (on the outside of

the object like a rubber band) and a 1-cycle is traversed

counterclockwise. Observe that in the either case black is

on the right.

Note: The name ñ1-cycleò is justified by the fact that

this is a sequence of 1-cells. But so is a 0-cycle. This

representation however is only a matter of convenience. It

can just as easily be represented as a sequence of vertices

or 0-cells.

Of course, 1-cycles of the picture are 0-cycles of its

negative and vice versa, except for ones that touch the

border of the image.

Given an image, any cycle can be traversed by taking

left turns from the initial edge in such a way that black

pixels are always on the right - until this edge is reached

again.

The result of this topological analysis is a partition of

the binary image. The partition is a collection of non-

overlapping regions, connected sets of black pixels and

connected sets of white pixels, that covers the whole

image. The partition is achieved by finding boundaries of

these regions as 0- and 1-cycles. These cycles are closed

curves made of vertical and horizontal edges of pixels.

6. The graph representation of the topology of

a binary image

The algorithm is incremental. The cycles are constructed

as pixels, one by one, are added to the image. Since every

pixel also contains edges and vertices, the process of

adding a pixel (cell) starts with adding its vertices and then

its edges, unless those are already present as parts of other

pixels. These vertices, edges, and pixels are marked as

"current" (see the next section).

As the new pixels are being added, components merge,

holes split, etc. The topology of the image changes. This

process is captured by cycles as they appear and disappear,

merge and split. The information about these changes is

recorded in a graph. Each node in the graph represents a

cycle. The directed arcs (arrows) that connect the nodes

represent the merging and the splitting of the cycles.

Adding a new vertex creates a new component and a

new node in the graph. Adding a new edge either connects

two components or creates a hole in an existing

component. Adding the square itself eliminates a 1-cycle.

Letôs consider an extremely simple example - adding a

single pixel to a blank image. It takes 9 steps

corresponding to the 9 items to be added.

The construction of the image is represented by a graph.

Its nodes correspond to the cycles and the arcs correspond

to merging and splitting of the cycles. Each arrow is

Figure 5. Adding a stand-alone pixel requires 9 steps: adding 4 vertices, 4

edges, and the cell itself.
.

.

Figure 6. The stages of adding a single pixel to a blank image. 0-

cycles are in red and the only 1-cycle is in green.

Figure 4. The objects and the holes are represented as cycles. Here

A and B are 0-cycles (red), C and Cô are 1-cycles (green).

accompanied by a number indicating which item is being

added.

At the first stage we have 4 nodes, corresponding to the

0-cycles. Then they merge into one. This 0-cycle splits

into two cycles, a 0-cycle and a 1-cycle. Finally, this 1-

cycle disappears. The end result is of course just the last

existing cycle, H. The graph building procedure and the

graph itself will however be important in the analysis of

gray scale images.

Generally, this is an acyclic directed graph. The

maximum degree is 2.

Suppose N is the number of pixels in the image. Then,

the total number of pixels, edges, and vertices is O(N) so

is the size of the graph.

7. The pseudocode of the analysis algorithm

for binary images

 A crucial part of the algorithm is the correspondence

table T: edge Ÿ cycle. Maintaining this table is necessary

at every step.

 The algorithm of image analysis is the process of

adding pixels one by one while keeping track of changes

in the topology.
// ---

ImageAnalysis with binary image I

FOR all pixels in I

 IF P is black THEN

 CALL Add Pixel with P

 ENDIF

ENDFOR

// ---

Next is the operation of adding a pixel. It includes

adding its vertices, its edges, and then the pixel itself.

Adding an edge means assigning cycles to both of the

directed edges ï forward E and back -E. In particular,

there is always a 1-cycle inside the pixel. It is ñremovedò

as the square closes the hole.
// ---

AddPixel with pixel P

CALL AddVertex with upper right vertex of P

CALL AddVertex with upper left vertex of P

CALL AddVertex with lower right vertex of P

CALL AddVertex with lower left vertex of P

CALL AddEdge with lower edge of P

CALL AddEdge with right edge of P

CALL AddEdge with upper edge of P
CALL AddEdge with left edge of P

E = lower edge of P directed counterclockwise

CALL RemoveCycle with 1 - cycle A = T(E)

// ---

Adding a vertex is trivial. It creates one new 0-cycle

represented by a node that isnôt connected to anything yet.

But first you verify that the vertex isnôt already present.
// ---

AddVertex with vertex V

IF V is present THEN

 RETURN

ENDIF

Mark V as present

Call Create Cycle with V RETURNING 0- cycle A

// ---

Adding an edge is the most complex step. There are

three cases illustrated in Figures 8-10. Which case is

determined based on the correspondence table T.
// ---

AddEdge with edge E

IF T(E) != NULL or T(- E) != NULL THEN

 RETURN

ENDIF

CALL NextEdge with E RETURNING edge E1

A = T(E1)

CALL NextEdge with ïE RETURNING edge E2

B = T(E2)

IF A == B THEN

 CALL SplitCycle with E1, E2, and A

ELSE

 CALL MergeCycles with E1 and A, B

ENDIF

// ---

Figure 8. Case (a): the new edge connects two different 0-cycles.

Figure 9. Case (b): the new edge connects a 0-cycle to itself.

Figure 7. A graph representation of the 9 steps required to add a stand-

alone pixel.

Figure 10. Case (c): the new edge connects a 1-cycle to itself.

Figure 11. Case (d): the new edge connects a 1-cycle and a 0-cycle.

A 0-cycle can merge with either 0- or 1-cycle.
// ---

MergeCycles with cycles A, B and edge E

CALL CreateCycle with E RETURNING 0 - cycle C

CALL MarkEdges with E and C

Add arcs from A , B to C to the graph

0- Betti number --
// ---

Either a 0- or a 1-cycle can split.
// ---

SplitCycle with edge s E1, E2 and cycle A

IF A is a 1 - cycle THEN

 CALL CreateCycle with E1 RETURNING 0 - cycle C

 CALL CreateCycle with E2 RETURNING 0 - cycle D

ENDIF

IF A is a 0 - cycle THEN

 CALL CreateCycle with E1 RETURNING 0 - cycle C

 CALL CreateCycle with E2 RETURNING 1 - cycle D

ENDIF

CALL MarkEdges with E1 and C

CALL MarkEdges with E2 and D

Add arcs from A to C , D to the graph

1- Betti number ++

// ---

 Creating a cycle means adding a new node to the graph.
// ---

Create Cycle with edge E

Create node A in the graph

T(E) = A

RETURN A

// ---

 Removing a cycle means assigning NULL to all of its

edges.
// ---

RemoveCycle with cycle A

FOR all edges E in I

 IF T(E) == A THEN

 T(E) = NULL

 ENDIF

ENDFOR

// ---

 Given an edge of a cycle, one can find the next edge of

the cycle.
// ---

NextEdge with edge E

Start points of edges E1, E2, E3, E4 = end point

of E

Direction of E1 = direction of E + 90 degrees

Direction of E2 = direction of E

Direction of E3 = direction of E - 90 degrees

Direction of E 4 = - direction of E

FOR edge G = E1, E2, E3, E4

 IF T(G) ! = NULL

 RETURN G

 ENDIF

ENDFOR

// ---

 Next function goes around a given cycle and assigns it

to the edges.

// ---

MarkEdges with edge E and cycle A

CALL NextEdge with edge E RETURNING edge G

WHILE G != E

 T(G) = A

 CALL NextEdge with edge G RETURNING edge G

ENDWHILE

// ---

8. The topology of a gray scale image

 A gray scale image is simply a table filled with numbers

indicating the gray level. One can also think of it as a

function of two variables (the gray level function) defined

on a rectangular grid.

 In binary images objects are either black areas

surrounded by white background or white areas

surrounded by black background. Similarly, our initial

assumption about gray scale images will be that objects

are either darker areas surrounded by lighter background

or lighter areas surrounded by darker background. In other

words, the dark objects are the connected sub-level sets

and the light objects are the connected supra-level sets of

the gray level function. The boundaries of the objects are

the level curves. Since all of these sets are connected

Figure 12.A gray scale image and its gray level function.

collections of pixels they will be represented as 0- and 1-

cycles.

 At this stage the image analysis does not have

unambiguous results.

It may seem clear that in the above image there are two

objects and the fist one has two holes. However, where the

boundaries of these objects are located depends on the

chosen threshold or thresholds. The choice of these

thresholds will affect the topology of the image, as

illustrated below.

The chosen thresholds will affect the measurements of

the objects will also be different. As a result some of the

objects may or may not be discarded as noise.

The maximal number of dark (light) objects is equal to

the number of local minima (maxima) of the gray scale

function.

Our approach to dealing with this ambiguity is to collect

all possible cycles and then filter them based on size,

contrast, etc.

The acquisition of all possible cycles is carried out via

image thresholding. Given a number T, thresholding is the

process of replacing all the pixels with gray level lower

than or equal to T with black leaving the rest white. This

creates a binary image that we call the frame

corresponding to T. As gray runs from 0 to 255, we have a

sequence of 256 frames. Observe that as you move from

frame to the next, more black pixels appear.

9. The graph representation of the topology of

a gray scale image

 The collection of all possible cycles is organized in a

graph, the topology graph of the gray scale image. The

collections of cycles of frames from 0 to 255 form a

sequence. They are arranged in layers within the graph.

The arcs in the graph indicate inclusion. Suppose we

change the threshold from 0 to 255. Then, any of the

minima of the gray scale function will produce a sequence

of growing dark objects, up to some threshold. At the

same time, any of the maxima will produces a sequence of

shrinking light objects, starting at some threshold. There

are also three other kinds of ñtopological eventsò (see

Figures 8-11):

1. dark objects merge,

2. a dark object form a hole (light object) inside,

3. light objects split.

 One can form the topology graph from the two

ñinclusion treesò ï the one for the dark objects and the

other for the light. The latter is turned upside down and

attached to the former wherever a topological event of the

second type happens. The topology graph may be a tree

(Figure 15), but generally it isn't. Consider, for example,

the negative of the image in Figure 15, below.

Figure 16. An image and its topology graph, which isnôt a tree.

Figure 15. The topology graph for the image in Figure 1. Here the

objects are: mouth E (black), head B (gray), eyes C and D, entire
image A (white).

Figure 13. The blurred version of the image in Figure 2.

Figure 14. Each choice of thresholds produces a different topology.

 As the threshold grows, new pixels are being added and

the cycles in the image appear and disappear. Components

merge, holes split, etc. and the topology keeps changing.

The information about these changes is recorded in the

topology graph. Each node in the graph represents a cycle,

and the arcs represent merging and splitting of the cycles.

As a matter of convenience instead of the topology

graph we build the augmented topology graph, or simply

the augmented graph, of the image. The growing threshold

creates a partial order on the set of pixels. In that order the

pixels are added to the image. The procedure of building

this graph with nodes representing cycles is exactly the

same as the one presented in Section 6. During this

process the 256 frames will appear but between them there

will be auxiliary stages. The frames will generate the

principal cycles and the rest are the auxiliary cycles. The

graph breaks into layers: auxiliary nodes, principal nodes

of the 0
th
 frame, auxiliary nodes, principal nodes of the 1st

frame, etc. The topology graph can be extracted from the

augmented graph by removing all auxiliary nodes and

adding arcs between principal nodes accordingly. Unlike

the topology graph, the augmented graph is dependent on

the order of pixels (within frames).

Suppose the image consists of two pixels, black and

gray, on white background. Then the construction of the

augmented graph starts with adding the black pixel. The

graph at this stage is given in Figure 55. It ends with a

single principal cycle, H. The rest are auxiliary.

Next, if the gray pixel isnôt adjacent to the black, the

second stage looks exactly the same as the first. It contains

a single frame cycle, Hô. In this case the augmented graph

consists of these two disconnected parts and the topology

graph is simply: H, Hô.

If the gray pixel is adjacent to the black, the augmented

graph is connected. There are 6 steps. Initially only H, the

0-cycle created during the first stage, is present. Then, two

new vertices are added creating two new 0-cycles, Bô and

Cô. Then two edges are added and these three cycles

merge. When the third edge is added, a 1-cycle appears.

Adding the square removes this cycle. Only one 0-cycle is

left, Hô (a two pixel dark object). The topology graph is

simply H Ÿ Hô.

Now, Hô contains H. Therefore only one of them should

be counted. Which one? This is for the user to decide. He

may be interested in larger objects (Hô) or objects with

higher contrast from the surroundings (H).

 Letôs consider another simple example. The visual

inspection of the image in Figure 17 reveals that it

contains two dark objects. This information can also be

acquired from the analysis of the frames of the image, as

follows. The number of objects in each frame is: 1, 2, and

1. However, to avoid double-counting, we will only count

an object if it does not have an ancestor in the previous

frame. Then the total count of objects in the image is: 1 +

1 + 0 = 2. This is the maximum possible number. The user

may decide that one or both of these objects are noise. In

the latter case there is only one object ï the whole square.

Some of the principal cycles will have to be discarded

by the user. The remaining ones will represent the

simplified topology of the image. We will call them active

cycles.

10. The pseudocode of the analysis algorithm

for gray scale images

 The algorithm of image analysis is the process of

adding pixels one by one while keeping track of changes

in the topology.

The analysis of the topology of a gray scale image

consists of two stages:

1. The creation of the augmented graph, and

2. The filtering of the principal cycles and

creation of the list of active cycles.

The operation of adding a pixel and all functions it calls

are exactly the same as in the case of a binary image. The

only difference is a list of all principal cycles is

maintained.
// ---

ImageAnalysis with gray scale image I

FOR all thresholds T = 0, é, 255

 FOR all pixels P in I

 IF the value of P <= T THEN

 CALL Add Pixel with P

 ENDIF

 ENDFOR

 Add all cycles with no descendan ts to the list

of principal cycles

ENDFOR

FOR all principal cycles C

 IF C is a 0 - cycle,

 Evaluate(C) == 1 and

C does not have an ancestor D with

Evaluate(D) == 1 THEN

 Add C to the list of active cycles

 ENDIF

 IF C is a 1 - cycle,

Figure 18: A gray scale image and its frames.

Figure 17. The augmented topology graph: adding the second

(adjacent to the first) pixel to the image. This graph is attached to the
graph in Figure 7.

